• python h5py 读取hdf 数据


    #Env dependent extension packages
    #pip install h5py -i https://pypi.tuna.tsinghua.edu.cn/simple
    #pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
    #pip install pandus -i https://pypi.tuna.tsinghua.edu.cn/simple
    
    #ruiY 
    
    hdfFile = 'Z_SATE_C_BAWX_20201020DF'
    
    
    import h5py
    
    hdf5File = h5py.File(hdfFile)
    #print(hdf5File.attrs['ProductID'])
    #print(hdf5File.attrs.keys())
    
    #FY4 hdf5文件属性数据
    for i in range(len(hdf5File.attrs.keys())):
        #print(i)
        #print(list(hdf5File.attrs.keys())[i])
        attrsName = list(hdf5File.attrs.keys())[i]
        attrsValue = hdf5File.attrs[attrsName]
        #print(attrimport time
    time.sleep(3)
      
    #FY4 hdf5文件科学数据集数据读取
    #print(list(hdf5File.keys()))
    datasets = list(hdf5File.keys())
    #print(datasets)
    for i in range(len(datasets)):
        #print(i)
        #hdf5File[]
        #print(datasets[i])
        dsetsName = datasets[i]
        #print(dsetsName)
        #time.sleep(2)
        #dsetsDtype = dsetsName.dtype
        #dsetsShape = dsetsName.shape
        #print(dsetsName)
        #print(dsetsName.dtype)
        #print('{}:{}:{}'.format(dsetsName,dsetsDtype,dsetsShape))
        #print(dsetsName.shape)
        #print('{}:{}:{}'.format(dsetsName,dsetsDtype,dsetsShape))
        #print('{}:{}'.format(dsetsName,dsetsShape))
        #print(type(dsetsShape)) #数据集类型
        #print(len(dsetsShape))  #数据集纬度
        
        #print(dsetsDimsX)
        #print(dsetsShape[0])
        dsetsDimsX = dsetsShape[0]
        #dsetsDims = len(dsetsShape)#判读纬度,一维数组就不用获取Yi列值
        #print('{},{},{}'.format(dsetsName,dsetsDimsX,dsetsDimsY))
        '''
        for Xi in range(dsetsDimsX):
            #print(Xi)
            #for Yi in range(dsetsDimsY):
                #print('{},{}'.format(Xi,Yi))
            #   pass
            if len(dsetsShape) == 2:
                #dsetsDimsXY = dsetsShape[1]
                #print(dsetsDimsXY)
                #///////print('{},{}'.format('二维',dsetsName))
                dsetsDimsY = dsetsShape[1]  #获取二维列数值
                #print(dsetsDimsY)
                for Yi in range(dsetsDimsY):
                    #print('{}:{},{}'.format(dsetsName,Xi,Yi))  #输出二维数据集对应的数据集名称及二维排列
                    #print()
                    pass
                    #//////二维列值
            else:
                #print('{},{}'.format('一维',dsetsName))
                #DimOneSetValues = list(dsetsName[Xi - 1])
                #print(DimOneSetValues)
                DimOneSetValues = list(dsetsName)
                print(DimOneSetValues)
        '''
        if len(dsetsShape) == 2:
            print('{},{}'.format('二维数集',dsetsName))
            dsetsDimsY = e,Xi,Yi,dimTwosSetValues))
        else:
            print('{},{}'.format('一维数集',dsetsName))
            
            for Xi in range(dsetsDimsX):
                dimOneSetValues = ''
                #DimOneSetValues = dsetsName[Xi - 1]
                #print(DimOneSetValues)
                #print(Xi)
                #print(typat(dsetsName,Xi,dimOneSetValues))
        

     hdfExplorer  hdfviewer

  • 相关阅读:
    【Linux】freetds安装配置连接MSSQL
    【MySQL】Sysbench性能测试
    【MySQL】mysql buffer pool结构分析
    【MySQL】MySQL锁和隔离级别浅析一
    Spring Boot 1.4测试的改进
    Spring Boot 定时任务的使用
    linux:nohup 不生成 nohup.out的方法
    Spring Boot应用的后台运行配置
    深入理解Session与Cookie(一)
    学习Maven之Cobertura Maven Plugin
  • 原文地址:https://www.cnblogs.com/ruiy/p/14068306.html
一二三 - 开发者的网上家园